OpenCV实现人脸对齐
OpenCV实现人脸对齐
一:人脸对齐介绍
在人脸识别中有一个重要的预处理步骤-人脸对齐,该操作可以大幅度提高人脸识别的准确率与稳定性,但是早期的OpenCV版本不支持人脸Landmark检测,因此一般都是通过对人脸进行分割,然后通过角点检测来寻找眼睛两个角点,连线之后根据它们有水平线的角度,旋转实现人脸对齐之后在提取人脸区域,OpenCV3.x版本开始支持获取Landmark数据,最常见的Landmark数据就是人脸的68个标准点位,图示如下:
实现对齐主要是基于眼睛的位置,对人脸倾斜进行几何变换,实现人脸对齐操作,人脸对齐对提高人脸识别率特别重要,常见的人脸识别系统都会包含人脸对齐操作,举例如下:
二:人脸对齐代码实现
基于OpenCV实现人脸对齐主要分为如下几步
1.人脸检测器定义与Landmark检测
OpenCV中通过HAAR或者LBP特征实现了人脸检测,最新的OpenCV3.4基于残差网络也实现了人脸检测,相关的文章可以阅读:
有了人脸之后,我们就可以通过加载预训练的Landmark检测模型,实现Landmark检测,这里使用的模型是局部二值特征(LBF-Local Binary Feature)实现人脸68个点位的检测,这个也是2014年CVPR的一篇论文。最新的OpenCV3.4 Landmark检测器支持自定义人脸检测器设置,所以只要把我们上面的HAAR/LBP/残差人脸检测器设置过去就会自动检测人脸,然后发现Landmark数据。整个代码实现如下:
// 创建LBF landmark 检测器
Ptr<FacemarkLBF> facemark = FacemarkLBF::create(params);
facemark->setFaceDetector((FN_FaceDetector)myDetector, &face_cascade);
// 加载模型数据
facemark->loadModel("D:/vcprojects/images/lbfmodel.yaml");
cout << "Loaded model" << endl;
// 开始检测
printf("start to detect landmarks...\n");
vector<Rect> faces;
facemark->getFaces(img, faces);
vector< vector<Point2f> > shapes;
if (facemark->fit(img, faces, shapes))
{
Point eye_left; // 36th
Point eye_right; // 45th
for (unsigned long i = 0; i<faces.size(); i++) {
eye_left = shapes[i][36];
eye_right = shapes[i][45];
line(img, eye_left, eye_right, Scalar(255, 0, 0), 2, 8, 0);
face_alignment(img(faces[i]), eye_left, eye_right, faces[i]);
// 绘制人脸矩形区域
rectangle(img, faces[i], Scalar(255, 0, 0));
// 绘制人脸68个 landmark点位
for (unsigned long k = 0; k<shapes[i].size(); k++)
cv::circle(img, shapes[i][k], 2, cv::Scalar(0, 0, 255), FILLED);
}
namedWindow("Detected_shape");
imshow("Detected_shape", img);
waitKey(0);
}
2.Landmark数据处理
对Landmark数据提取获得眼睛位置坐标,这里我们获取的是36与45两个点坐标计算角度(参照第一张图),然后通过几何变换实现人脸对齐操作。代码如下:
int offsetx = roi.x;
int offsety = roi.y;
// 计算中心位置
int cx = roi.width / 2;
int cy = roi.height / 2;
// 计算角度
int dx = right.x - left.x;
int dy = right.y - left.y;
double degree = 180 * ((atan2(dy, dx)) / CV_PI);
// 旋转矩阵计算
Mat M = getRotationMatrix2D(Point2f(cx, cy), degree, 1.0);
Point2f center(cx, cy);
Rect bbox = RotatedRect(center, face.size(), degree).boundingRect();
M.at<double>(0, 2) += (bbox.width / 2.0 - center.x);
M.at<double>(1, 2) += (bbox.height / 2.0 - center.y);
// 对齐
Mat result;
warpAffine(face, result, M, bbox.size());
imshow("face-alignment", result);
3.运行效果
完整的程序代码如下:
#include <opencv2/opencv.hpp>
#include <opencv2/face.hpp>
#include <math.h>
#include <iostream>
using namespace cv;
using namespace cv::face;
using namespace std;
const String lbpfilePath = "D:/opencv-3.4/opencv/build/etc/lbpcascades/lbpcascade_frontalface.xml";
bool myDetector(InputArray image, OutputArray faces, CascadeClassifier *face_cascade);
void face_alignment(Mat &face, Point left, Point right, Rect roi);
int main(int argc, char** argv) {
Mat img = imread("D:/vcprojects/images/gaoyy.png");
namedWindow("input", CV_WINDOW_AUTOSIZE);
imshow("input", img);
CascadeClassifier face_cascade;
face_cascade.load(lbpfilePath);
FacemarkLBF::Params params;
params.n_landmarks = 68; // 68个标注点
params.initShape_n = 10;
params.stages_n = 5; // 算法的5个强化步骤
params.tree_n = 6; // 模型中每个标注点结构树 数目
params.tree_depth = 5; // 决策树深度
// 创建LBF landmark 检测器
Ptr<FacemarkLBF> facemark = FacemarkLBF::create(params);
facemark->setFaceDetector((FN_FaceDetector)myDetector, &face_cascade);
// 加载模型数据
facemark->loadModel("D:/vcprojects/images/lbfmodel.yaml");
cout << "Loaded model" << endl;
// 开始检测
printf("start to detect landmarks...\n");
vector<Rect> faces;
facemark->getFaces(img, faces);
vector< vector<Point2f> > shapes;
if (facemark->fit(img, faces, shapes))
{
Point eye_left; // 36th
Point eye_right; // 45th
for (unsigned long i = 0; i<faces.size(); i++) {
eye_left = shapes[i][36];
eye_right = shapes[i][45];
line(img, eye_left, eye_right, Scalar(255, 0, 0), 2, 8, 0);
face_alignment(img(faces[i]), eye_left, eye_right, faces[i]);
// 绘制人脸矩形区域
rectangle(img, faces[i], Scalar(255, 0, 0));
// 绘制人脸68个 landmark点位
for (unsigned long k = 0; k<shapes[i].size(); k++)
cv::circle(img, shapes[i][k], 2, cv::Scalar(0, 0, 255), FILLED);
}
namedWindow("Detected_shape");
imshow("Detected_shape", img);
waitKey(0);
}
return 0;
}
bool myDetector(InputArray image, OutputArray faces, CascadeClassifier *face_cascade)
{
Mat gray;
if (image.channels() > 1)
cvtColor(image, gray, COLOR_BGR2GRAY);
else
gray = image.getMat().clone();
equalizeHist(gray, gray);
std::vector<Rect> faces_;
face_cascade->detectMultiScale(gray, faces_, 1.1, 1, CASCADE_SCALE_IMAGE, Size(50, 50));
Mat(faces_).copyTo(faces);
return true;
}
void face_alignment(Mat &face, Point left, Point right, Rect roi) {
int offsetx = roi.x;
int offsety = roi.y;
// 计算中心位置
int cx = roi.width / 2;
int cy = roi.height / 2;
// 计算角度
int dx = right.x - left.x;
int dy = right.y - left.y;
double degree = 180 * ((atan2(dy, dx)) / CV_PI);
// 旋转矩阵计算
Mat M = getRotationMatrix2D(Point2f(cx, cy), degree, 1.0);
Point2f center(cx, cy);
Rect bbox = RotatedRect(center, face.size(), degree).boundingRect();
M.at<double>(0, 2) += (bbox.width / 2.0 - center.x);
M.at<double>(1, 2) += (bbox.height / 2.0 - center.y);
// 对齐
Mat result;
warpAffine(face, result, M, bbox.size());
imshow("face-alignment", result);
}
文章有源码的公众号才值得关注
书痴者文必工,
艺痴者技必良!
关注【OpenCV学堂】
长按或者扫码下面二维码即可关注
加群 + 573300093